Planar graphs without cycles of length 4 or 9 are $\boldsymbol{(2,~0,~0)}$-colorable

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar graphs without cycles of length from 4 to 7 are 3-colorable

Planar graphs without cycles of length from 4 to 7 are proved to be 3-colorable. Moreover, it is proved that each proper 3-coloring of a face of length from 8 to 11 in a connected plane graph without cycles of length from 4 to 7 can be extended to a proper 3-coloring of the whole graph. This improves on the previous results on a long standing conjecture of Steinberg. © 2004 Elsevier Inc. All ri...

متن کامل

Planar graphs without adjacent cycles of length at most seven are 3-colorable

We prove that every planar graph in which no i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7 is 3-colorable and pose some related problems on the 3-colorability of planar graphs.

متن کامل

Planar graphs without 4-, 5- and 8-cycles are 3-colorable

In this paper we prove that every planar graph without 4, 5 and 8-cycles is 3-colorable.

متن کامل

On 3-colorable planar graphs without short cycles

Let G be a graph. It was proved that if G is a planar graph without {4, 6, 7}-cycles and without two 5-cycles sharing exactly one edge, then G 3-colorable. We observed that the proof of this result is not correct. 1 Let G be a simple graph with vertex set G. A planar graph is one that can be drawn on a plane in such a way that there are no “edge crossings,” i.e. edges intersect only at their co...

متن کامل

The 3-colorability of planar graphs without cycles of length 4, 6 and 9

In this paper, we prove that planar graphs without cycles of length 4, 6, 9 are 3-colorable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2019

ISSN: 1674-7216

DOI: 10.1360/n012018-00129